Ácido-base

Descarga estas diapositivas en formato PDF 📥

Teorías ácido-base

(continúa hacia abajo)

👇

Teoría de Arrhenius

Propuesta por el sueco Svante Arrhenius en 1884, constituye la primera definición moderna de ácidos y bases en términos moleculares.

Ácido

Sustancia que se disocia en agua formando cationes hidrógeno (H+).

Base

Sustancia que se disocia en agua formando aniones hidróxido (OH).

Teoría de Brønsted-Lowry

Propuesta en 1923 independientemente por el danés Johannes Nicolaus Brønsted y el inglés Martin Lowry, se basa en la idea de pares de ácido-base conjugados.

Cuando un ácido, HA, reacciona con una base, B, el ácido forma su base conjugada, A, y la base forma su ácido conjugado, HB+, mediante el intercambio de un protón (catión H+):

$$ \mathrm{HA} + \mathrm B ⇌ \mathrm A^- + \mathrm{HB}^+ $$

Ácido

Sustancia capaz de ceder protones (H+) a una base:

$$ \mathrm{HA} + \mathrm{H_2O} ⇌ \mathrm A^- + \mathrm{H_3O^+} $$

Base

Sustancia capaz de aceptar protones (H+) de un ácido:

$$ \mathrm{B} + \mathrm{H_2O} ⇌ \mathrm{HB}^+ + \mathrm{OH^-} $$

Esta teoría se considera una generalización de la teoría de Arrhenius.

Fuerza relativa de los ácidos y bases

En función de cuan ionizado/a o disociado/a se encuentre un ácido o una base, distinguimos entre ácidos/bases fuertes y débiles, términos que describen la facilidad para conducir la electricidad (gracias a la mayor o menor presencia de iones en la disolución).

(continúa hacia abajo)

👇

Grado de ionización

También llamado grado de disociación, $\alpha$, se define como el cociente entre la cantidad de ácido/base ionizado/a y la cantidad de ácido/base inicial:

$$ \alpha = \frac{\text{cantidad de ácido/base ionizado/a}}{\text{cantidad de ácido/base inicial}} $$

Suele expresarse en tanto por ciento (%).

Ácidos y bases fuertes

Totalmente ionizados/as ($\alpha \approx 1$). Conducen bien la electricidad.

  • Ácidos: HClO4, HI(ac), HBr(ac), HCl(ac), H2SO4 (1ª ionización) y HNO3.
  • Bases: Hidróxidos de metales alcalinos y alcalinotérreos.

Ácidos y bases débiles

Parcialmente ionizados/as: $\alpha < 1$. Conducen mal la electricidad.

  • Ácidos: HF(ac), H2S(ac), H2CO3, H2SO3, H3PO4, HNO2 y ácidos orgánicos, como el CH3COOH.
  • Bases: NH3 (o NH4OH) y bases orgánicas nitrogenadas, como aminas.

Constante de disociación

Es una medida de la fuerza de un ácido/base en disolución:

ÁCIDO BASE
EQUILIBRIO HA + H2O ⇌ A + H3O+ B + H2O ⇌ HB+ + OH
CONSTANTE $\displaystyle K_\mathrm a = \frac{[\mathrm A^-][\mathrm{H_3O}^+]}{[\mathrm{HA}]}$ $\displaystyle K_\mathrm b = \frac{[\mathrm{HB}^+][\mathrm{OH}^-]}{[\mathrm B]}$
COLOGARITMO $\displaystyle \mathrm p K_\mathrm a = -\log K_\mathrm a$ $\displaystyle \mathrm p K_\mathrm b = -\log K_\mathrm b$

Equilibrio iónico del agua

El agua es una sustancia anfiprótica (puede tanto donar como aceptar un protón H+), lo que le permite actuar tanto como ácido o como base (anfoterismo).

El equilibrio iónico del agua hace referencia a la reacción química en la que dos moléculas de agua reaccionan para producir un ion oxonio (H3O+) y un ion hidróxido (OH):

$\mathrm{H_2O} + \mathrm{H_2O} ⇌ \mathrm{H_3O^+} + \mathrm{OH^-}$. https://commons.wikimedia.org/wiki/File:Autoionizacion-agua.gif
$\mathrm{H_2O} + \mathrm{H_2O} ⇌ \mathrm{H_3O^+} + \mathrm{OH^-}$.
https://commons.wikimedia.org/wiki/File:Autoionizacion-agua.gif

La constante de equilibrio, denominada producto iónico del agua, y denotada por $K_\mathrm w$, puede aproximarse por el producto:

$$ K_\mathrm w = [\mathrm{H_3O^+}][\mathrm{OH^-}] $$

A 25 °C:

$$[\mathrm{H_3O^+}] = [\mathrm{OH}^-] = 10^{-7}\thinspace\mathrm M \Rightarrow K_\mathrm w = 10^{-14} $$

Relación entre $K_\mathrm a$ y $K_\mathrm b$

Dado un ácido, HA, y su base conjugada, A, podemos multiplicar $K_\mathrm a$ y $K_\mathrm b$:

$$ K_\mathrm a \cdot K_\mathrm b = \frac{[\mathrm A^-][\mathrm{H_3O}^+]}{[\mathrm{HA}]}\cdot\frac{[\mathrm{HA}][\mathrm{OH}^-]}{[\mathrm{A^-}]} = [\mathrm{H_3O}^+][\mathrm{OH}^-] = K_\mathrm w, $$

por lo que (suponiendo $T = 25\thinspace^\circ\mathrm C$):

\begin{align*} K_\mathrm a\cdot K_\mathrm b &= K_\mathrm w = 10^{-14} \\ \mathrm p K_\mathrm a + \mathrm p K_\mathrm b &= \mathrm p K_\mathrm w = 14 \end{align*}

Concepto de pH

Se define el pH como el cologaritmo de la concentración de iones oxonio, H3O+:

$$ \mathrm{pH} = -\log[\mathrm{H_3O^+}] $$

Análogamente se define el pOH en función de la concentración de iones hidróxido, OH:

$$ \mathrm{pOH} = -\log[\mathrm{OH^-}] $$

A partir de la expresión del producto iónico del agua, $K_\mathrm w$, tomando logaritmos:

\begin{align*} [\mathrm{H_3O^+}][\mathrm{OH^-}] &= K_\mathrm w \\ \log [\mathrm{H_3O^+}] + \log [\mathrm{OH^-}] &= \log K_\mathrm w \\ -\mathrm{pH} - \mathrm{pOH} &= -14 \\ \mathrm{pH} + \mathrm{pOH} &= 14 \end{align*}

Escala de pH

También puedes jugar con esta simulación:

Volumetrías de neutralización ácido-base

Una valoración/titulación ácido-base es un método de análisis químico cuantitativo para determinar la concentración de un ácido o base identificado (analito), neutralizándolo exactamente con una disolución estándar de base o ácido de concentración conocida (valorante).

Reacciones de neutralización

En una reacción de neutralización, un ácido y una base reaccionan de manera irreversible para producir una sal y agua:

$$ \text{ÁCIDO} + \text{BASE} \longrightarrow \text{SAL} + \text{AGUA} $$

Según sea el valorante un ácido o base fuerte, el pH en el punto de equivalencia será:

ANALITO/VALORANTE Fuerte/Fuerte Ácido débil/Base fuerte Base débil/Ácido fuerte
pH (EQUIVALENCIA) 7 > 7 < 7
INDICADOR (vira en medio) Neutro Básico Ácido

Aprende más sobre la importancia de las reacciones ácido-base para el esmalte dental en esta excelente entrada del blog.

Indicadores ácido-base

Aprende a utilizar la cúrcuma como indicador de pH y crea tinta invisible con esta genial práctica de la mano de Miguel Quiroga.

Un indicador de pH es un compuesto químico halocrómico (cambia de color —vira— ante cambios de pH) que se añade en pequeñas cantidades a una disolución para poder determinar visualmente su pH (acidez o basicidad).

El cambio de color se denomina viraje.

Tornasol

Mezcla soluble en agua de diferentes colorantes extraídos de líquenes. Absorbido en papel de filtro constituye uno de los indicadores de pH más antiguos utilizados ($\sim$ 1300).

Naranja de metilo

Colorante azoderivado que vira de rojo a naranja-amarillo en medio ácido:

Fenolftaleína

Indicador de pH incoloro en medio ácido que vira a rosa en medio básico:

Indicador universal

Mezcla de indicadores (azul de timol, rojo de metilo, azul de bromotimol y fenolftaleína) que presenta cambios suaves de color en una amplia gama de valores de pH.

Hidrólisis de sales

En lo que sigue, suponemos siempre cantidades estequiométricas.

En caso de que haya exceso de alguna de las sustancias, el pH resultante queda determinado por lo que queda sin reaccionar.

Sales ácido fuerte y base fuerte

Cuando los iones en los que se disocia una sal provienen de ácidos/bases fuertes, no reaccionan con agua (hidrolizan), pues tienden a estar completamente ionizados:

La disolución resultante es neutra (pH = 7).

Sales ácido débil y base fuerte

En este caso el ion proveniente del ácido débil sí se hidroliza:

La disolución resultante es básica (pH $>$ 7).

Sales ácido fuerte y base débil

En este caso el ion proveniente de la base débil sí se hidroliza:

La disolución resultante es ácida (pH $<$ 7).

Sales ácido débil y base débil

En este caso ambos iones se hidrolizan:

  • $K_\mathrm a > K_\mathrm b \Rightarrow$ La disolución resultante es ácida (pH $<$ 7).
  • $K_\mathrm a = K_\mathrm b \Rightarrow$ La disolución resultante es neutra (pH = 7).
  • $K_\mathrm b > K_\mathrm a \Rightarrow$ La disolución resultante es básica (pH $>$ 7).

Disoluciones reguladoras

También llamadas disoluciones amortiguadoras o tampón, son disoluciones acuosas que consisten en una mezcla de un ácido o base débil y su conjugado correspondiente.

Mantienen el pH de una disolución prácticamente invariable frente a pequeñas adiciones de ácido o base a la misma gracias a la neutralización del exceso de iones H3O+ o OH.

Tampón ácido débil + sal de su base conjugada

$$ \mathrm{HA} + \mathrm{H_2O} ⇌ \mathrm A^- + \mathrm{H_3O}^+ $$
$$ K_\mathrm a = \frac{[\mathrm A^-][\mathrm{H_3O}^+]}{\mathrm{[HA]}}, $$
$$ \mathrm{[H_3O^+]} = K_\mathrm a\cdot \frac{\mathrm{[HA]}}{\mathrm{[A^-]}} $$

Tomando logaritmos y cambiando de signo: \begin{align*} -\log\mathrm{[H_3O^+]} &= -\log K_\mathrm a - \log\frac{\mathrm{[HA]}}{\mathrm{[A^-]}} \\ \mathrm{pH} &= \mathrm p K_\mathrm a - \log\frac{\mathrm{[HA]}}{\mathrm{[A^-]}} \\ \mathrm{pH} &= \mathrm p K_\mathrm a + \log\frac{[\text{base conjugada}]}{[\text{ácido}]} \end{align*}

expresión que se conoce como ecuación de Henderson-Hasselbalch.

Tampón base débil + sal de su ácido conjugado

$$ \mathrm B + \mathrm{H_2O} ⇌ \mathrm{HB}^+ + \mathrm{OH}^- $$
$$ K_\mathrm b = \frac{\mathrm{[HB^+][OH^-]}}{\mathrm{[B]}}, $$
$$ \mathrm{[OH^-]} = K_\mathrm b\cdot \frac{\mathrm{[B]}}{\mathrm{[HB^+]}} $$

Tomando logaritmos y cambiando de signo llegamos a otra forma de la ecuación de Henderson-Hasselbalch:

$$ \mathrm{pOH} = \mathrm p K_\mathrm b + \log\frac{[\text{ácido conjugado}]}{[\text{base}]} $$

Importancia biológica del pH

(continúa hacia abajo)

👇

Tampón H2CO3 / HCO3

Regula el pH de la sangre $\rightarrow$ $\mathrm{pH} = 7.40 \pm 0.05$:

Tampón H2PO4 / HPO42–

$$ \mathrm{H_2PO_4^-} ⇌ \mathrm{HPO_4^{2-}} + \mathrm{H}^+ $$

Ácidos y bases relevantes

(continúa hacia abajo)

👇

A nivel industrial

(continúa hacia abajo)

👇

Ácido sulfúrico (H2SO4)

El compuesto químico más producido del mundo, obtenido a base de hidratar SO3 concentrado previamente del SO2. Su principal uso es para crear ácido fosfórico que a su vez se emplea en fertilizantes.

\begin{align*} \mathrm{H_2SO_4} + \mathrm{H_2O} &\longrightarrow \mathrm{HSO_4^-} + \mathrm{H_3O^+}\quad\text{(ácido FUERTE)} \\ \mathrm{HSO_4^-} + \mathrm{H_2O} & ⇌ \mathrm{SO_4^{2-}} + \mathrm{H_3O^+}\quad\text{(ácido DÉBIL)} \end{align*}

Ácido nítrico (HNO3)

$$ \mathrm{HNO_3} + \mathrm{H_2O} \longrightarrow \mathrm{NO_3^-} + \mathrm{H_3O^+}\quad\text{(ácido FUERTE)} $$

A nivel de consumo

(continúa hacia abajo)

👇

Ácido acético (CH3COOH)

Presente en el vinagre, aunque principalmente usado en la fabricación de fibras textiles.

$$ \mathrm{CH_3COOH} + \mathrm{H_2O} ⇌ \mathrm{CH_3COO^-} + \mathrm{H_3O^+}\quad\text{(ácido DÉBIL)} $$

Amoniaco (NH3)

Empleado principalmente en la producción de fertilizantes.

$$ \mathrm{NH_3} + \mathrm{H_2O} ⇌ \mathrm{NH_4^+} + \mathrm{OH^-}\quad\text{(base DÉBIL)} $$

Hidróxido de sodio (NaOH)

Empleado sobre todo en la fabricación de papel, tejidos y agentes de limpieza.

$$ \mathrm{NaOH} \longrightarrow \mathrm{Na^+} + \mathrm{OH^-}\quad\text{(base FUERTE)} $$

Problemas medioambientales

(continúa hacia abajo)

👇

Lluvia ácida

Causada por la emisión de óxidos de azufre y nitrógeno que, en contacto con el agua, forman ácido sulfúrico y ácido nítrico, entre otros:

Óxidos de azufre (SOx) Óxidos de nitrógeno (NOx)
SO2 + H2O ⟶ H2SO3 3 NO2 + H2O ⟶ 2 HNO3 + NO
SO3 + H2O ⟶ H2SO4

Se considera lluvia ácida si $\mathrm{pH} < 5.5$.

Sus principales efectos son:

  • Acidificación de aguas (ríos/lagos) y suelos.
  • Deterioro del patrimonio histórico (ataca rocas calizas, a base de CaCO3).

Algunas soluciones serían:

  • Sustituir combustibles fósiles por energías renovables.
  • Uso de catalizadores en vehículos.
  • Adición de un compuesto alcalino en ríos y/o lagos para neutralizar su acidez.
  • Tratamiento de monumentos con recubrimientos adecuados, como el Ba(OH)2, que reaccionan con el ácido sulfúrico formando BaSO4, evitando la erosión.

Esmog

Proveniente de la contracción de smoke y fog, se refiere a una contaminación atmosférica debida sobre todo a óxidos de nitrógeno (NOx), azufre (SOx), ozono (O3), humo y otras partículas.

Se considera un problema derivado de la industrialización moderna, aunque es más común en ciudades con climas cálidos, secos y mucho tráfico.

Efectos:

  • La presencia de ozono y óxidos de nitrógeno y azufre causa problemas respiratorios, especialmente en ancianos y niños/as.

Algunas de las soluciones propuestas son:

  • Reducir las emisiones de óxidos de nitrógeno y de compuestos orgánicos volátiles.
  • Reducir la contaminación.

Simulación

Exportar a PDF

📥 Pincha aquí y sigue estas instrucciones:

  1. Abre el diálogo de Impresión (Control-P si estás en Windows).
  2. Cambia el Destino a Guardar como PDF.
  3. Cambia el Diseño a Horizontal.
  4. Cambia los Márgenes a Ninguno.
  5. Activa la opción Gráficos de fondo.

El proceso, en principio, solo funciona con Google Chrome.